Habitat Use and Head-Starting of Mojave Desert Tortoises

Brian Todd

Assistant Professor of Vertebrate Conservation Biology January 27, 2011

Acknowledgments

 Debra Hughson, Science Advisor, Mojave National Preserve, National Park Service

 Roy Averill-Murray, Desert Tortoise Recovery Coordinator, US Fish and Wildlife Service

Research Team

• Kurt Buhlmann, Associate Research Scientist, Savannah River Ecology Lab, University of Georgia

- Reintroductions, translocations, and headstarting of Gopher tortoises in SC.
- Head-starting and translocations of Blanding's turtles in MA.
- Creation of artificial nesting habitat for Wood turtles in NJ.

Research Team

• Tracey Tuberville, Assistant Research Scientist, Savannah River Ecology Lab, University of Georgia

- Reintroductions, translocations, and headstarting of Gopher tortoises in SC and GA.
- Reproduction and social structure of Gopher tortoises in SC and GA using molecular techniques.
- Head-starting and translocations of Blanding's turtles in MA.

Defining the problem

- Increased investment in solar and wind renewable energy.
- Rapid development and increased use of California deserts.
- Possible negative impacts to desert ecosystems and sensitive and protected species.

Defining the opportunities

- Informing where and how development occurs to minimize impacts to desert species.
 - Requires improved knowledge of distribution and habitat use of rare/sensitive species.
- Investing in strategies that promote the preservation and persistence of rare/sensitive species elsewhere to offset negative impacts where they cannot be avoided.
 - Requires improved knowledge of efficacy/applicability of various management strategies for rare/sensitive species.

Mojave desert tortoises

- Public icon for California deserts.
- Protected as a threatened species by both state and federal law.
- Still declining in several parts of its range, likely from reduced adult survival and low juvenile recruitment.

The missing years

- Juvenile tortoises less frequently encountered.
- Lower survival than adults.
- Historically difficult to study.
- Most studies have focused on adults.

Primary research goals

- Better inform questions about habitat suitability as it relates to improved recruitment/survival of juvenile tortoises.
 - Identify features conducive to survival.
 - Inform location of future development.
- Inform our understanding of the applicability of head-starting of desert tortoises as a mitigation tool to facilitate population recovery in protected habitats.
 - Increased importance of persistence in preserves.

Head-starting defined

- The hatching and rearing of turtles through an early part of their life cycle.
 - Heppell et al. 1996. Ecological Applications.

- To increase survivorship via the protection of juvenile turtles until they are less susceptible to predators upon release.
 - Hazard and Morafka 2002. Chelonian Conservation and Biology.

Prescriptions for head-starting

- 2008 Draft Revised Recovery Plan (USFWS)
 - 3.1: "Develop protocols and guidelines for the population augmentation program, including those specific to head-starting..."

Role of head-starting

- Cannot substitute for loss of adults or long-term reductions in adult survival.
- "However, successful captive rearing programs can produce large cohorts to "boost" a recovering population..."
 - Heppell. 1998. Copeia.
- Short-term intervention and management tool to increase/augment populations.

Maximizing head-starting effectiveness

- "... a shorter generation time increases the potential benefits of head-starting."
 - Heppell et al. 1996. Ecological Applications.

- Supplemental rainfall in western Mojave has been shown to increase growth rates of captive tortoises.
 - Nagy, Hillard, Tuma et al. at Edwards, Fort Irwin, and Twentynine Palms.

Study Site

Study Site

Ivanpah Desert Tortoise Research Facility

Ivanpah Desert Tortoise Research Facility

Basic procedures

- Collect females in adjacent habitat.
- Allow them to nest in predator-proof outdoor enclosures.
- Release females and allow eggs to incubate.
- Upon hatching, establish 3 experimental groups:
 - 1) Direct releases
 - 2) Head-started animals
 - 3) Head-started animals receiving supplemental rain

Experimental group 1

- Direct release hatchlings will be fitted with radiotransmitters and released at pre-selected release sites.
- Locate them twice weekly.
- Identify any sources of mortality, as well as quantify habitat use based on vegetation sampling, topography, soil type, and other factors.
- Record GPS points.

Gopher tortoises fitted with radio-transmitters.

Photo by Matt Hinderliter, US Army, Camp Shelby

Experimental group 2

- Will be maintained outdoors in semi-natural conditions with predators excluded.
- Will not receive supplemental rainfall.
- Will be held captive until approximately 105mm carapace length.
- Will be fitted with radiotransmitters upon release.
- Additional post-release data collected.

Hatchling desert tortoise seeking afternoon shade. Photo: Tracey Tuberville, SREL

Experimental group 3

- Will be maintained outdoors in semi-natural conditions with predators excluded.
- Will receive supplemental rainfall.
- Will be held captive until approximately 105mm carapace length.
- Will be fitted with radiotransmitters upon release.
- Additional post-release data collected.

Young tortoise active in early morning. Photo: Brian Todd, UC Davis

Outdoor enclosures

Photo: Tracey Tuberville, SREL

Timeline

- New cohort of hatchlings started in each of 3 consecutive years beginning 2011.
- Habitat use of all released animals in each year will be monitored continuously throughout duration of project (or to mortality).
- Survival and growth of all animals will be monitored continuously throughout duration of project.
- Record morphometric data at each transmitter replacement.

Habitat use data

- Determine landscape and vegetation community characteristics selected by young tortoises at the microhabitat scale.
- Identify those characteristics associated with highest survival and growth.
- Will allow us to evaluate potential sites for planned infrastructure development.
- Identify future release sites to promote recovery of the species.
- Inform potential habitat restoration and improvement to recover degraded habitat.

Efficacy of head-starting

- To what extent do our head-starting treatments increase growth and survival of young tortoises?
- To what extent will rain supplementation have a positive effect on tortoise growth rates?
- Is this a viable, feasible option to support the recovery and persistence of desert tortoise populations?

The End

 Thanks to Misa Milliron and Linda Spiegel, the CEC PIER Environmental Area, and the California Energy Commission